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ABSTRACT  

A Winkler soil model for pile groups is described for both axial 
and flexural responses of pile groups subjected to dynamic loading. 
Using this soil model, closed form solutions of dynamic responses of 
pile groups are obtained. The responses of pile groups are reviewed 
for two-pile groups and the natures of pile-soil-pile interactions are 
studied. The frequency dependent parameters of the equivalent Kelvin-
Voight model are shown for 2 x 4 piles attached to a common rigid cap. 

INTRODUCTION  

Several people have studied the dynamic responses of pile groups. 
Among them, Wolf and Von Arx (1978) used a finite element method. 
Nogami (1979) and Kaynia and Kausel (1982) used solutions obtained 
from equations for wave propagation in a three-diimensional continuum 
in their analyses of pile groups. Nogami (1980, 1982, and 1983) and 
Sheta and Novak (1982) developed a Winkler soil model for grouped 
piles which can account for a dynamic pile-soil-pile interaction in a 
Winkler model. The parameters of this Winkler model were defined from 
a solution obtained from equations of wave propagation in a plane 
strain medium. 

This paper summarizes some of the findings obtained in the 
previous studies by the authors and also presents the new results on 
the dynamic response of pile groups. 

SOIL MODEL  

Two identical massless cylindrical columns are embedded in a 
homogeneous soil stratum as shown in Fig. 1. A perfect connection is 
assumed at the soil-pile interface. According to Refs. 2 and 3, the 
amplitude of the soil responses and soil reactions at the soil-column 
interface are expressed in the following forms under a steady state 
vibration; respectively 

{w} = E{Wn}cos h
nz; {pv  } = E{pvn }cos hnz vertical motion 

(1) 
= E{Un}cos hnz; {ph} = E {phn}cos hnz lateral motion 

where {w} and {u} = vectors containing the amplitudes of the two dis-
placements; {PV} and {p6} = vectors containing the amplitudes of the 
two reaction forces; tin  = 7(2n - 1)/(2H); H = thickness of the 
stratum; and 8 = direction of the force applied. The vectors in the 
right hand side of Eq. 1 are related to each other through {Wil} = 

and {Un} lfvnJ{Pvn} and = LfhriJIPhn} where lfvnJ lfhni are 2 x 2 
matrices and the value at the location (i,j) can be obtained from 
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. . . for 0 = 90°  
where Gt = Gs(1+2iDs); Gs  = shear modulus of the soil; Ds  = damping 
ratio of the soil; ro  = radius of the pile; R = distance between the 
two piles for i j and r = ro  for i = j; Ko  and K1 are zero and the 
first order modified Bessel functions of the second kind, respec-
tively; Xn  =j(nhn)1  + (a5/r0)1; sn  =1hn4  + (4/1'0 )4; qn  = Sn/n; n = 
vp/vs;vz and vs  = P-wave and S-wave velocities, respectively; a$ = 

I 
 

aoi/ +2Dsl ; and ao  = row/vs. Thus, the soil stiffness matrix a
l
t the 

columns in thq n-th mode can be obtained from [kvn] = flfvni-  and 
ikhnJ = LfhnJ-1 where fpvn) = lkvnJ(Wri)  and (Phri)  = lkhn.gun • 

When the frequency parameter ao  is large compared to nhnro, both 
in  and sn  can be replaced by Ln  = sn  = a5/ro  and then the expressions 
in Eq. 2 become, respectively: 

K0(810 ) 

[Ki(blc k)+11ko(bt,R)A2K1(a,(1)+alorK0(a(1)]-Ki(aV7)[2K1(bt)+1(0(08") 

fhn(i'j)  nG*17"a*)214K (b*)K (a*) + a*K (b*)K (a*) + b*K (b*)K (a*)J 
s o lolo ol000 00000 

. . . for 0 o° 

-K1(bV[2K1(aV+at)K0(a10)]+[K1(a1
0
47)+0

0
,K

0
(ap)][2K1(bV+bt)Ko(bV] 

fhn(i'j)-
IG*IT(a*)21.4K (b*)K (a*)+a*K (b*)K (a*)+b*K (b*)K (a*)] 
s o lolo ol000 000lo 

. . . for e = 90° (3) 

where b$ = a$ /n; and R = R/ro. The expressions in Eq. 3 are indepen-
dent of the mode number n and identical to those obtained under the 
plane strain conditions shown in Fig. 2. As the frequency ao  
increases beyond the fundamental natural frequency of the soil 
deposit, the stiffnesses [k vn ] and [khn ] are found to approach quickly 
to the approximate expressions of those stiffnesses obtained from Eq. 
3. 
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Using the approximate soil stiffness Lkv0] constructed from Eq. 
3, {PO in Eq. 1 can be expressed approximately by {pv} 
[kvo] (Wn) cos hnz = [kvol E{Wn} cos hnz 

or
{Pv}

Lkvo.1{w}' and similarly {ph} [kho] {u} (4) 

The expressions in Eq. 4 indicate the soil reactions to the vibrating 
columns depend only on the displacements of the columns at the depth 
where the reactions are considered and are independent of those at 
other depths. Thus, the soil around the sides of the columns can be 
replaced by a Winkler model as shown in Fig. 3 and the parameters can 
be determined from the plane strain conditions shown in Fig. 2. 
Errors induced by this approximation in the soil model are very small 
and neglibible for pile group problems at the frequencies higher than 
the fundamental natural frequency of the soil deposit (Fig. 4). 

DYNAMIC RESPONSES OF PILE GROUPS  

TWO-PILE GROUPS - The upper and lower portions of the columns shown in 
Fig. 1 are assumed to be occupied by the pile shaft and soil columns 
as shown in Fig. 5, respectively. The columns and the surrounding 
soil are divided into M segments and homogeneous soil layers. The 
equations of motions of the two columns for a steady state vibration 
can be written by 

d
2
-7 LEAJ — {w} + co

2 
LmJ {w} = {Pv} 

(5) 

d4 2 
-LEI] ---4  {u} + w [n] {u} {Ph} 

dz 
where LEAJ, [EI], and [m] = 2 x 2 diagonal axial stiffness, flexural 
stiffness, and mass matrices of the columns; and w = circular excita-
tion frequency. When the soil around the sides of the columns are 
replaced by a Winkler model as shown in Fig. 3, the solutions of Eq. 5 
are: 

2 
{w} = E A exp (xviz){dvi} + Bvj  exp (-xviz){dvi} (6) 

j=1 vi 
2 

{u} = E Ah4  exp (xhiz){dhj} + Bhj  exp (-xhiz) {dhj} 
j=1 

+ Chi  exp (ixhjz) {dhj}  + Dhj  exp (-ixhjz) {dhj} 

where xvj and {do} = j-th eigenvalue and eigenvector for axial 
response, respectively; and Ahj and {dhj} = j-th eigenvalue and eigen- 
vector for flexural response, respectively. The above eigenvalues and 
eigenvectors are obtained from the following equations: 

[41.1] + [y ]] {dv} (0) or [41[I] - Lyh JJ = {0} (7) 
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where L7 v] = LEA]-1  IY)2LmI - lIkv0.1]; CYO - [EI]-1  P.02[m] - LkhoE; 
[kvo j and LkhoJ = soil stiffness matrices obtained under the plane 
strain conditions for vertical and lateral soil reactions, respec-
tively. From Eq. 6 and the conditions shown in Fig. 6, the displace-
ments and forces at the upper end of the segment are related with 
those at the bottom end through the expression, 

I

f WI
. [t 

{ p 

V 

{0 u) 

{w} 
and 

( 
{$} 

{la
h
} = [thi]I

( 
{0 
{Ph} (8) 

{Pv
} 

 j+1 {M} . {m} 
j+1 

where {Pv} and {Ph} = amplitudes of axial and shear forces in the 
columns, respectively;{M} -= amplitudes of moment forces in the 
columns; {*} = amplitudes of rotations of the columns; and [tvj] and 
[thij = transfer matrices within the j-th segment. The relationship 
in Eq. 8 for j=1 through j=M leads to 

p
v 

= [Tv] 11°1 and 

1
p
vl M+1 

{Ph 

{{:} 

[TO {Phl (9) 

} 
M+1 

where [Tv] [tv1] Etv2i [tvM]; and [TO = [thl] [th2]....1thm] 
bottom of the 

I{P 
hi (10) 

{M}  1 

where [F] = LT12I LT22)-1; and [T12.1 and 17221 = 2 x 2 submatrices for 
axial response or 4 x 4 submatrices for flexural response, located in 
the following positions of [Ti: 

LTI = 
(1T111  LT1211 

GENERAL PILE GROUPS - N piles in a group and the 
y z, are shown in Fig. 7. Using a plane strain 
stiffness matrix for N piles can be expressed in 
described above, 

global coordinates, x 
assumption, the soil 
a similar way as that 

{pz} = Lkvj{6z} and r{p
x)

y
}1 = Lkh] {6

y
}1 
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where {SO, {6} and {6z} = vectors containing amplitudes of the N 
displacements in the x, y and z directions, respectively; {Px}, {Py} 
and {pz} = vectors containing amplitudes of the N soil reactions in 
the x, y and z directions, respectively; [kvj and [khj = soil stiff-
ness matrices in the global coordinate system. 

Using the notations corresponding to the global coordinate system 
and Eq. 11, the equation of motion in Eq. 5 can be rewritten for the 
global coordinate system. The matrix iTj is obtained by solving this 
equation following the same procedures as those described above. 
Then, the pile-head stiffness matrix of N-grouped piles is LKJ = LT221 
x LT121-i  where LT221 and LT12J are N x N matrices for axial response, 
and 2N x 2N matrices for flexural response; and the stiffness matrices 
LKJ for axial and flexural responses are defined by, respectively 

{pz} = LKJ {6z} and (12 = {Xi 

where {osy} and (My) = vectors containing amplitudes of N rotations and 
moments around the y axis, respectively; {0x} and {Mx} = vectors con-
taining amplitudes of N rotations and moments around x axis, respec-
tively. 

When the piles are arranged symmetrically with respect to the x 
and y axes and attached to a common rigid cap, the stiffnesses of the 
piles and cap system at the center of the origin of the coordinates 
are expressed by 

K
cap 

P
z p6 

= K
cap 

6
z 

and 
Pit I 

Mi = 

[cap 
PS PO 

Kcap cal] 
M6

Kcal 
 61 

(13) 
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where j = x and i = y for the motions on 8 = 0° plane, and j = y and i 
= x for the motions on 8 = 90° plane; stiffness in Eq. 13 can be 
obtained from LKJ in Eq. 12. 

The pile groups attached to a rigid cap are often modeled by a 
Kelvin-Voight model. The parameters of this model are defined by kcaP 
= Re KcaP and ccaP = Im KcaPho where kcaP and ccaP = spring and 
dashpot parameters in an equivalent Kelvin-Voight model. 

RESULTS AND REVIEW  

The diagonal terms of the pile-head flexibility matrix are nearly 
identical to the flexibility of a single isolated pile. Thus, the 
group factor can be determined using the flexibility matrix in Eq. 10 
by 

amplitude of Fj(1,2) 

group factor = amplitude of F.(1,1) 

where j = wP, uP, uM, oP or OM. Figure 8 shows the comparison between 
the static and dynamic group factors for various distances of pile 
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spacing between the two piles. The relative stiffness between pile 
and soil, KR, is defined here by KR = (EA)/(E5L2) for axial stiffness 
and KR = (EI)/(EsL4) for flexural stiffness where L is the length of 
the pile. It is seen in the figure that the dynamic conditions 
increase the group effect more for more flexible piles and for 6 = 90° 
than for 0 = 0°. These trends are most significant in the coupling 
terms, Flpp and Fum. 

The dynamic response of pile groups is affected by not only the 
amplitude but also the phase shift of the motions transmitted from 
other piles. Figure 9 shows the variation of both the amplitude and 
phase shift of the pile response induced by the other pile in two-pile 
group. Both homogeneous and non-homogeneous soil profiles were used 
in this study. The distribution of Young's modulus in the non- 
homogeneous soil profile is defined in Fig. 10. The average soil 
properties along the pile shaft length in the nonhomogeneous soil pro-
file correspond to those in the homogeneous soil profile. Figure 9 
shows that the amplitude of the pile response induced by the trans-
mitted motion decreases more rapidly with distance in the 
nonhomogeneous soil profile than the homogeneous profile, whereas the 
phase shift increases more rapidly with distance in the nonhomogeneous 
soil profile. 

The material damping decreases the amplitude of the transmitted 
motion. This trend is more pronounced in 0 = 90° than 0 = 0° in 
flexural response. The phase shift of the response induced by the 
transmitted motion in the 0 = 90° flexural response is very similar to 
that in axial response, and varies with distance more rapidly than the 
phase shift in the 0 = 0° flexural response. This is because the 
motion is governed by the S-wave in both axial and 0 = 90° flexural 
responses and by the P-wave in the 8 = 0° flexural response. 

Because of the difference in the phase shift between the pile 
responses induced by direct loading and by the transmitted motion, the 
behaviors of the spring and dashpot parameters of the pile group 
differ from those of a single isolated pile as shown in Fig. 11; 
where the curve "no group effect" shows the behaviors of a single 
isolated pile. The peak value occurs when the phase shift between the 
Fj(1,1) and F3(1,2) is equal to n. 

When the 2 x 4 piles attached to a rigid cap shown in Fig. 12 is 
considered, the spring and dashpot parameters vary with frequency as 
shown in Fig. 13. The behaviors of these parameters result from the 
superposition of the transmitted motions from all the piles through 
the soil medium. 

CONCLUSIONS  

For the analysis of dynamic response of pile groups, the soil 
around the pile shafts can be reasonably well modeled as a Winkler 
model. This Winkler model for the pile group can be defined from the 
behavior of a plane strain medium, and is capable of reproducing the 
pile-soil-pile interaction. 

The dynamic response of pile groups results from the super-
position between the pile responses directly induced and induced by 
the transmitted motions from other piles in a group throught the wave 
motion in the soil medium. The behaviors of the pile groups is 
generally more strongly frequency dependent than that of single piles. 

-6- 
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This is due to the phase shifts between the directly induced pile 
motion and the transmitted motions. Thus, the frequency dependent 
behavior of pile groups is controlled by the type of predominant waves 
induced in the soil, frequency, and distance of pile spacing. The 
effect of the soil material damping is primarily a reduction of the 
amplitude of the transmitted motion. Gibson type nonhomogeneity in 
the soil profile tends to decrease the amplitude but increase the 
phase shift of the transmitted motion from those values corresponding 
to a homogeneous soil profile. 
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